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We study the activated-barrier-crossing (ABC) problem using the Hamiltonian approach with general
memory friction kernels and for a parabolic barrier joined to an infinite wall. We solve the problem us-
ing the Grote-Hynes (GH) theory and the more recent Pollak-Grabert-Héanggi (PGH) approach. We
show that the singular behavior of the rate for large memory correlation times is an example of critical
phenomena. We determine all the relevant critical exponents in different regimes and explicitly show
that the rate has a scaling behavior. We verify that the universality of exponents and amplitudes is ap-
plicable in both the GH and the PGH solutions. Studying the ABC problem with techniques borrowed
from critical phenomena reveals its rich mathematical structure and points out the ways in which one
may discover the critical behavior of this problem experimentally.

PACS number(s): 05.40.+j, 64.60.Fr, 82.20.Db

I. INTRODUCTION

The problem of activated barrier crossing (ABC) has
attracted a great deal of interest recently [1,2]. Kramers
pioneered an approach to this problem based on the
Langevin equation [3] using a static (or Markovian) fric-
tion ¥, which is proportional to the viscosity of the medi-
um. The assumption of Markovian friction means that
the escaping particles are moving slowly compared with
the rapid fluctuations exerted on them by the heat bath.
Kramers solved this problem in both the small and the
large damping limits. In the small damping limit, the
motion is almost conservative, the rate limiting step being
the gaining of sufficient energy by the particles to reach
the barrier top. This is called the energy diffusion limit
and the rate is proportional to . In the high damping
limit, the escaping particles are in equilibrium with the
heat bath in the potential well region and the rate limit-
ing step is the passage over the barrier. This is called the
spatial diffusion limit and the rate is proportional to 1/y.
In the case when the potential is a parabolic barrier, Kra-
mers obtained an exact solution to the ABC problem for
Markovian friction. The rate equation for this case is
usually called his intermediate to high damping result.
Kramers’s results have now been generalized in many
different directions including memory friction [4].

If the friction term in the Langevin equation involves
memory, then this equation is called a generalized
Langevin equation. Grote and Hynes [4] solved the prob-
lem exactly in this case for a purely parabolic barrier.
Later, van der Zwan and Hynes applied the Grote-Hynes
(GH) approach to their model for a dipole isomerization
reaction rate in polar solvents [5]. They found that in the
regime of long solvent response times, the reaction rate
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had singular aspects which could be described in terms of
simple power laws.

Very recently we found [6] that this behavior is more
general than the van der Zwan—-Hynes model and shows
up whenever the memory relaxation time 7 in the ABC
problem is sufficiently large. We showed that the singu-
lar behavior can be understood easily from the point of
view of critical phenomena. We also demonstrated that
the escape rate can have scaling properties typically asso-
ciated with such phenomena. It is well known from the
study of critical phenomena [7] that whenever a charac-
teristic length or time scale in a problem becomes very
large, scaling and universality arise automatically. Scal-
ing means that the various physical quantities can be
represented as functions of scaled parameters. This usu-
ally implies new relations between critical exponents [8].
Universality means that the exponents depend on very
few relevant parameters of the system and certain com-
binations of critical amplitudes also depend on few
relevant parameters [8].

The purpose of this paper is to provide more details
concerning our previous calculations regarding the para-
bolic barrier with an infinite wall. Details of other poten-
tials will be published separately in the future. In Sec. II
we briefly introduce the model and review the known re-
sults. In Sec. III we study the GH limit of the ABC
theory, where the barrier has an exact parabolic shape.
We illustrate how and why one uses scaling and univer-
sality using the case of an exponential memory friction.
In Sec. IV we generalize the memory friction in the GH
theory in order to reveal the dependence of various ex-
ponents on the form of the memory friction. In Sec. V
we introduce our more general scaling hypothesis. In
Sec. VI we solve the perfectly reflecting wall (PRW) mod-

2540 ©1994 The American Physical Society



49 CRITICAL SCALING BEHAVIOR IN THE ACTIVATED-. ..

el using the Pollak-Grabert-Héanggi (PGH) approach. In
Sec. VII we study this solution in the scaling limit and
obtain the scaling functions. In Sec. VIII we discuss,
from the point of view of scaling, the piecewise parabolic
potential studied in detail by Pollak, Grabert, and
Hanggi. We find that this potential and the PRW have
the same set of exponents and combinations of critical
amplitudes. Concluding remarks are provided in Sec. IX.

II. MODEL AND PREVIOUS RESULTS

In this section we introduce our model and review pre-
vious results. We are concerned with the ABC problem
in one dimension, where the damping force has memory.
In the Langevin approach to this problem, this means
that the dampmg term —yv, where v is the velocity of
the escaping particle, is replaced by — f dt'E(t—t" ('),
() being the memory friction kernel (MFK).

Typically, one deals with an MFK of the form

:

=Y
&(e) 7_g , (1)

where 7 is a relaxation time such that, for ¢ >>7, the
value of £(z) becomes very small, ultimately going to zero
when t— . Here the static friction y is defined as
y= f dt §(1), so that

J dugw=1, @)

where u =t /7. Using hydrodynamic arguments [9] it is
possible to show that r=ay, where a is a constant
parametrizing the MFK. The Markovian limit studied
by Kramers corresponds to (t)=2y5(t) or g(u)=28(u),
where § is the Dirac delta function.

The Langevin method is equivalent to a Hamiltonian
approach [10], where one models the heat bath as a set of
independent harmonic oscillators. In the ABC problem,
this approach was initiated by Pollak [11] and brought to
culmination in the work of PGH [12], where a rate equa-
tion valid for all dampings was derived. What is even
more important, their work offered the possibility of a
systematic attack on the problem for any MFK and for
any potential which has a parabolic barrier. Specifically
discussed in the PGH paper was exponential friction
g(u)=exp(—u) within the weak-coupling approximation.

It is convenient to discuss the PGH results in the two-
dimensional space of variables 1/a*=1/aw? and
1/y*=w, /v, where o, is the usual imaginary barrier
frequency. See Fig. 1. The variable 1/y*, which is in-
versely proportional to the static friction, is essentially
the time in which the equilibrium Maxwell distribution in
velocity is attained in the Markovian limit. The variable
1/a*, introduced by van der Zwan and Hynes [5],
characterizes the strength of the random force of the
medium, called the solvent force. In regions II and III,
where a is low and the random forces are strong, the
solution to the problem is qualitatively similar to the
Kramers case for which « is identically zero. Here ener-
gy diffusion is important for low y* and spatial diffusion
for high y*. In regions I and IV, where a* is high and
the random forces are weak, energy diffusion is important
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FIG. 1. The various regimes of interest in the two-
dimensional space of the variables 1/a* and 1/y*.

throughout. Scaling is expected to be valid for large 7
which implies that only in region III it is not valid. Now
7 can be large in two ways: fixed a, large ¥ and fixed y,
large a. In this paper, we will only discuss the critical
phenomena that occur for large y. The second case will
be discussed in a future publication.

The Hamiltonian of the system is given by [11]

2
C; X
L4 2 1 i

H= l’—+V 2 :

wixi_

m; m;o;

(3)

where the ith bath oscillator has coordinates x;, momen-
tum p;, mass m;, and angular frequency ;. The bath os-
cillators are independent of one another but couple
linearly with coefficients c; to the system coordinate x, of
mass M. The coefficients c; are related to the MFK {(¢)
by the relation

5 cos(w;t) 4)

g(t>=—}_‘,

l l
The potential we choose is given by

V(x)=E,—iMo}lx? x>—x,

(5)

Vix)=w , x<—x,.

This is an inverted parabola with the barrier top at x =0
and a perfectly reflecting wall at x =—x,. We call this
the PRW potential. The quantities E, and x are related
by E, =7Mcof,x3.

In the next section, we study this model using the GH
approach for an exponential memory friction. We will
show how the behavior of the rate is described by power
laws and how scaling and universality naturally arise in
the GH approach.

III. SCALING AND UNIVERSALITY IN THE GH LIMIT
FOR EXPONENTIAL FRICTION

When the potential is purely parabolic, we get the GH
limit of the ABC problem. Of course, if the barrier
height goes to infinity, the rate goes to zero because of
the Arrhenius factor. However, if one divides the rate by
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the transition state theory [1] rate, one gets a finite result
in this limit [13]. This is called the reduced rate and it
depends only on the MFK. It is given by the largest real
and non-negative root of the GH equation [4]

A -1
(r*w,)

pr= e B2 (6)
Wy

where r* is the reduced rate and C(s) is the Laplace
transform of the MFK &(¢). From (1), we can write

f(r*a)b)=*yf0wdu gluexp(—r*a*y*u), )]

where the product r*a*y*u can be seen to be equivalent
to the Laplace transformation exponent r*w,t. In this
section we concentrate on the case of exponential friction
where

g(u)=g(0)exp(—klul) . (8)
In this case, the GH reduced rate is given by
r*: r*+ g(O)l * (9)
k+r*a*y*

For large memory friction time, i.e., when 7>>1, three
different results are obtained depending on the strength
of coupling parameter a. The results are best expressed
in terms of the critical coupling a¥ =g(0) and

A=1—a}/a*=1—a./a, (10)

which is proportional to the deviation of a from its criti-
cal value. For strong coupling,

TR S E (1
ar |Aly
but for weak coupling
r*~Al"? a>a, . (12)
When «a is close to a,,
1/3
k 1
r*z ;:— '}";m , a=a, . (13)

Exponential friction was previously studied by van der
Zwan and Hynes [5]. They in fact studied a more general
memory friction which reduced to an exponential one in
the extremely overdamped solvent limit. In that case,
they obtained the exponents seen in (11)-(13). In addi-
tion, PGH [12] also studied this case in detail and found
the same exponents. However, the relevance of critical
phenomena to these exponents was not appreciated until
later [6].

It is clear from looking at these equations that the
behavior of the rate for y* >>1 changes sharply as one
crosses the point a=a,. At the point y*=w and a=«,,
the rate is a continuous function of its parameters but its
derivative is infinitely discontinuous. Therefore the rate
is not an analytical function at the point y*=c and
a=a,.

One can see the singularity even more clearly in Fig. 2,
where we have plotted the reduced rate as a function of
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FIG. 2. The plots of the GH reduced rate r* vs 1/y*, the in-
verse of the memory friction relaxation time, for fixed values of
1/a*, the coupling strength, for the case of the simple exponen-
tial friction p=1. The values of 1/a* from the top are
0,0.2,0.5,0.8,1 (dashed),2,5,100.

1/y* for different values of 1/a*. For all values of a
greater than a., the rate has a discontinuous slope at
1/y*=0. As a comes nearer to «, the discontinuity
remains but decreases in magnitude. At the critical value
and below, the discontinuity totally disappears. This is
analogous to the behavior of a physical system near a
critical point. Consider for example the coexistence of up
and down phases in an Ising ferromagnet below its criti-
cal point. The spontaneous magnetization disappears
when one reaches the Curie point.

The above analogy can be made even more concrete.
Consider the correspondence

magnetization <r* ,
temperature «1/a* , (14)
magnetic field «<>1/y* .

By using these, one can see that the behavior of the ABC
problem in the GH approximation, given in Egs.
(11)-(13), is identical to the mean-field behavior of the Is-
ing model.

We know that, in general, the rate is a function of two
parameters a* and y*. Scaling tries to reduce this depen-
dence to one variable by defining scaled parameters. It
does not work in the full parameter space, but we know
from critical phenomena that it works near a critical
point. Scaling also leads to new relations between the ex-
ponents, so that the number of independent exponents is
reduced. In our case, we see from (11)—(13) that there are
four exponents determining the behavior in the critical
region, two for A and two for y*. We will see later that
scaling reduces these to just two.

To introduce scaling, let us expand the rate (9) near the
critical point 1/y*=0and a=a,. We get

——=0. (15)

We now introduce scaled variables by the relations
f=Ar*y*?, y=BAy*®, (16)

where the two exponents a and b and the two amplitudes
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A and B are yet to be determined. If scaling is valid, all

exponents will be determined in terms of a and b. Intro-

ducing these into Eq. (15), one finds

2 A2y,yt2a-—b _ kA 3yt3a—1
B azf

f =0. (17)

From this, we see that we can make f a function of y
alone if we choose

a=1, b=2a=1, (18)

independently of the values of 4 and B. This is expressed
by writing
1

"zjy*—mf(y) , y=BAY*, (19)

and one says that the rate obeys scaling. The scaling
function f(y) is given by

fi-2—-=2=0. (20)

Since scaling does not determine 4 and B, they must can-
cel out from the behavior of the rate in different regimes.
We will see this below.

The scaling behavior is valid in the critical region, i.e.,
a=a,, and y*>>1 but for any value of y. Different
values of y represent different ways of approaching the
critical point. We will now verify that the scaling func-
tion has the appropriate behavior in different regimes as
seen in Egs. (11)-(13). In the strong-coupling spatial
diffusion regime, a is held fixed at a value less than a,
while ¥ becomes very large. We see from (16) that in this
case y is negative and very large in magnitude. From Eq.
(20) we obtain f(y)~(kAB)/(a*|y|). Substituting this
in Eq. (19), Eq. (11) is reproduced with 4 and B canceling
as expected. In the ABC literature, this is usually called
the Smoluchowski limit.

Similarly, in the case of weak coupling, a is held fixed
at a value greater than a, while ¥y becomes very large.
We see from (16) that in this case y is positive and very
large. From Eq. (20) we obtain f(y)= A(y /B)'/?, which
when substituted in Eq. (19) reproduces the proper
behavior as mentioned in Eq. (12). Of course A and B
cancel again. In the chemical literature, this is usually
called the solvent caging regime.

Finally, in the intermediate-coupling regime, we have
critical coupling, a=a, and y becomes very large. We
see from Eq. (16) that y=0 and Eq. (20) then gives
f(0)= A(k /a¥)!/3. Substituting this into Eq. (19) we get
the rate expression mentioned in Eq. (13), with 4 and B
canceling again. We call this the “core” regime because
it lies in the very heart of the critical region.

We can also show scaling pictorially. We take the data
in Fig. 2 in the critical region again and replot it by using
the scaled rate f(y) and scaled distance from the critical
point. The data points all collapse so that we have a
function of only one variable. This is shown in Fig. 3.
We can also see the asymptotic behaviors of the scaling
function for y going to * .

We saw above that all of the exponents determining the

275 =5 0 5 10
y
FIG. 3. The plot of the scaled GH rate f(y) vs the scaled de-
viation from the critical point y for the simple exponential fric-
tion case p=1.

behavior of the rate in the critical region could be ex-
pressed in terms of just two, @ =+ and b=§. The fact
that these exponents do not depend on g(0) and k is a
manifestation of exponent universality of critical phenom-
ena. We will see in Sec. IV that the particular values de-
pend on the fact that the MFK is a simple exponential in
nature. For now let us introduce another important con-
cept, the amplitude universality.

Figure 3 shows us that all GH systems with a simple
exponential friction but different values of g(0) and k will
have a scaling function similar to the one shown in this
figure. They will be displaced with respect to each other
because of two things. First, the value of f(y) at y=0
depends on k and g(0). Second, the behavior of f(y) for
y— — o depends on k and g(0) also. The hypothesis of
amplitude universality says that by suitable choice of am-
plitudes, we can get rid of these dependencies to make
even the scaling function universal. The following choice
can be seen to satisfy this requirement:

1/3 2/3

B=A%= [a—:

X (21)

A=

*
<
k
Equation (20) determining the scaling function f(y)

now becomes

I — (22)

f

This cubic equation can be solved by standard methods.
We get
172 ‘

0<y=<(Z)'? (23

172
|

YA (24

172
|

y=<0. (25

172

cosh 27

icosh_l —3
4y

— |4
f) 3

4 172
for= |2 cos [—cos_l

172

4ly| sinh

Ayl 27
3

lsinh_1 3
4|y

fly)= 3
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It can be readily verified that this universal scaling func-
tion reproduces the appropriate behavior in different re-
gimes.

In summary, by choosing suitable exponents and am-
plitudes we have shown that the critical behavior of the
rate for a GH system with an exponentially decaying
MFK depends only one two exponents and, furthermore,
all such systems have the same universal scaling function
given by Egs. (23)-(25). In the critical theory this is ex-
pressed by saying that all these systems are in the same
universality class. In the next section we generalize these
results to determine more universality classes based on
the form of the MFK.

IV. SCALING AND UNIVERSALITY
FOR GH SYSTEMS WITH GENERAL MFK

In this section we consider the GH theory with more
general MFK. It is clear from the discussion of the pre-
vious section that the scaling is applicable for large 7, for
fixed a, and large y. Therefore we need to consider the
behavior of g(u) in Eq. (1) only for small u. We assume
that

glu)=g0)—wlul?, u<<l, (26)

where w is a positive constant that, for p a positive in-
teger, is related to the pth derivative of g(u) at ¥ =0. For
all other p values, w is just another amplitude describing
the MFK. As examples, we note that for the simple ex-
ponential friction studied in the preceding section,
w=kg(0) and p=1. For the Lee-Robinson friction [14],
§()=(2y /mt)sin(t /ay), g(0)=2/m, w=1/3m, and
p=2. In fact, one may consider general frictions of the
form

g(u)=g(0)exp(—k|ul?), 27)

in which case w=kg(0). Using Eq. (26) in (7), we find

that
N w,g(0) wy,wl(p+1)
Brtoy)=———————— (28)
r*a* (r *o* )p y *p
where I'(z) is the standard gamma function. Substituting
Eq. (28) in Eq. (6) and expanding the result for a near a,,
we find

*

r2-pa——Y _—p, (29)
r*Py*P
where
w,zwl“(g+1) . (30)
a:p+1

Scaling and universality can be discovered exactly as in
Sec. III. We omit the details and give the results. It is
found that the rate obeys a scaling law of the form

= f(), y=B,ARYY )

*p/(p+2
Ap/;/p P

with the amplitudes given by

Ap:w*—l/(p+2) , BP:Agzwt—Z/(p+2) . (32)

The universal scaling function f(y) is now given by the
implicit equation

flmy—fP=0. (33)

This equation cannot be solved in general. We have al-
ready displayed its solution for the case p=1. It can also
be solved for the case p=2. We get

1721172

1+ 2 (34)

y
.___+
4

fy)= 5

In spite of the fact that Eq. (33) cannot be solved in
general, the behavior of the rate for general p can be ob-
tained in all of the interesting regimes by studying (33) in
various limits and substituting the results in (31). Again
we omit the details and give the results. In the spatial
diffusion limit, y — — « and we get

rtzw*l/py*~l|Al—l/p, (35)

while in the weak-coupling limit, y — « and the rate is
given by

r¥=A"? . (36)

At the critical point y =0 and we obtain

r*zw*l/(p+2)7/*-p/1p+2) . (37)

It can be readily seen that all of the results of Sec. III can

TABLE 1. Behavior of the rate for the PRW model in the scaling regime for low scaled barrier
height. The critical value of a is . =g(0)/w}, A=1—a./a,and E;} =E, /kpT.

Regimes of a GH

PGH

Strong
coupling
a<ac wt]/p,y**l]A|*l/p
Critical

coupling

a=a, w

Weak
coupling
a>a, A2

*l/(p+2),y*4p/(p+2)

w*l/p,}/*-llA'*l/p

zp( 1 +p/2)Eb*w*3/(p+2),y*~3p/lp+2)

ZPEI:W‘A”*}”/Z'}’*;P
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be obtained as special cases of the results in this section
for p=1. A graph of f(y) versus y is shown in Fig. 3 and
the results for general p are summarized on the left-hand
side of Table 1.

In the GH theory, only the parabolic barrier needs to
be considered. The other parts of the potential, such as
the wall in our case, can be neglected. In this case the re-
duced rate does not depend on the barrier height. It de-
pends only on the form of the MFK. Remarkably, we
have found that in the GH case, the universal scaling
function depends only on one parameter of the MFK,
namely, p which essentially determines how the friction
decays for short times. But in the general problem when
the well cannot be neglected, the reduced rate will de-
pend on the barrier height and one will have to introduce
a more general scaling form. Guided by our exact results
in this section, we introduce a general scaling hypothesis
in the next section.

V. GENERAL SCALING HYPOTHESIS

Since the reduced rate depends on the parameters of
the MFK and the barrier height E,, it is reasonable to ex-
pect that the scaled rate will involve another scaling com-
bination, the scaled barrier height. Let us assume that
the barrier height scales as ¥*°. Then we propose that in
the scaling region a=a,, y*>>1 and E} =E, /kzT >>1
[15], the exact reduced rate R* obeys the scaling hy-
pothesis:

F(y,z),

1
* * * *\ i,
R*(a Y ’Eb )= Apy*P/(P"’Z)

. *2p /( )
y_B A»y p/(p+2 ,

z=C,Ejy*"°.

Here the variable y is the scaled distance from the critical
point, as before, and the variable z is the scaled barrier
height. The exponent ¢ and the amplitude C, are un-
determined at this point as is the dependence of the scal-
ing function F(y,z) on y and z. In writing this hypothesis
we have made use of the knowledge we gained in the GH
limit which is a special case of (38) for z— «. Clearly,
F(y,©)=f(y). The new exponent ¢ and the new ampli-
tude C, can depend on both the form of MFK as deter-
mined by p and the shape of the well.

We expect that the scaling function F(y,z) will now de-
pend on particular parameter or parameters of the poten-
tial which determine its deviation from a pure parabola.
As reported in our brief communication [6], we have con-
sidered general potentials where the terms of the form
x?" are added to the barrier on one side. We have
demonstrated that the scaling hypothesis mentioned
above is indeed verified and determined the exponents
and amplitudes in the PGH formalism. The details of
this calculation will be published separately, but we men-
tion some important conclusions here.

As suspected, the new exponent and the new amplitude
depend on both the parameters of the MFK and the po-
tential well. The new exponent c is found to be

c=2pn/(p+2)n—1). (39)

The new amplitude C, is found to be

Cp=wt—2n/(p+2)(n—l) . (40)

These results can be summarized by saying that within
the PGH approximation, the reduced rate obeys the scal-
ing hypothesis and all systems having potentials deter-
mined by the same value of n and having MFK deter-
mined by the same value of p belong to the same univer-
sality class.

In the next section, we give details of our calculation
for the potential (5), i.e., a parabolic barrier joined by a
perfectly reflecting wall within the PGH approximation.

VI. SOLUTION OF THE PRW MODEL
IN THE PGH APPROXIMATION

The Hamiltonian of the PRW model is given by Egs.
(3) and (5). It is clearly a quadratic form in N+1 vari-
ables in the barrier region. The nonlinearity which
occurs only in the well region is confined to a single
point x=—x,. We diagonalize the Hamiltonian with
the help of an orthogonal transformation U= {u;},
i,j=0,1,2,...,N, for all x > —x to obtain [11,12]

H=1p"+E,— A p*+1 3 (] +AlpD) (41)

where p and p; are the normal mode coordinates in the
barrier region and A, and A; are the normal mode fre-
quencies. Henceforth all sums and products will be from
1 to N. The unstable normal mode frequency A, is equal
to r*w,, where r* is the GH reduced rate introduced pre-
viously, which satisfies Eq. (6). The equations of motion
for the normal coordinates are given by

P—Ap=0, p;+Alp;=0, (42)

in the barrier region, where x > —x,. In this region, all
the modes are decoupled from one another and move in a
deterministic fashion given by (42).

Because of the presence of the infinite wall in x space,
the x coordinate will be reflected at time ¢, say. Since
the new unstable mode p is related to old unstable mode
by x=(1/V'M ) (ugp+3u;op; ), it will receive a “kick”
or impulse at this time. This impulse will produce the ex-
tra force and the change in energy of the stable bath
modes during each round trip of the unstable mode. In
the PGH weak-coupling approximation, the zero-order
equation of motion for the unstable normal mode does
not involve the coupling constant g;,=u;;/uqy. This
amounts to placing the wall in the p space at the point
p=—p*=—M"xy/uqy,.

We start the unstable mode at t = — « from the top of
the barrier, let it reflect from the wall at t =0 and come
back to the top of the barrier at t=o. With these
boundary conditions, we can solve for p and the extra
force. The solution for p is given by

p(t)=—p*exp(—A,lt]) 43)

and the extra force due to the nonlinearity imposed by
the wall is given by

F(£)=24p*8(1) . (44)
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Once the force is known, the change in the energy of the
p mode when the system returns to the barrier can be
found from Egs. (3.21) and (3.22) of Ref. [12]. We get

E—E'=—AE+3E , (45)
where the average energy loss is

AE=2)2p*’3 g} (46)

and the fluctuation term is

It is easily seen that the fluctuations are Gaussian with
zero average and (8E?) =2k, TAE, as expected in the

PGH approximation. Once the energy loss 8=AE /kzT

is obtained, the reduced rate is given by [12]
R*=r*Me() , (48)
where the Mel’'nikov-Meshkov integral is given by [16]

1 + o ln[l_e—u(l+y2)/4]
Me(u)=exp | — d
P Trf—oc y 1+y2

(49)

The integral cannot be done exactly, but it is easily shown
that Me(u)=1 for u >>1 and Me(u)=u for u <<1.

We have now obtained the escape rate for the potential
(5) for any friction within the PGH approximation. We
note that the reduced rate is expressed entirely in terms
of the quantities involved in the GH limit. Since we have
discussed the GH limit in detail, we will be able to dis-
cuss the PGH rate in the scaling region. That is the sub-
ject of the next section.

VII. SCALING AND UNIVERSALITY
IN THE PGH APPROXIMATION

We see from (48) that the rate is determined by the di-
mensionless energy loss 6 which can be obtained from
(46). We get

§=4e(1+e)Efr*?, (50)

where we have used the relations between p* and x, and
also between A, and r*. Here ¢ is the PGH weak-
coupling parameter and is related to u, by the equation:
udy=1/(1+¢). Itis given by [12]

s=2gi— f dt £(1)

N1—r*w,t)exp(—r*w,t) .

2r*w,
(51)

Using Eq. (1) for £(z), substituting the expansion (26) for
g(u) and doing the integral, we obtain
wpl(p+1)
2ap+1,yp(rtwb )p+2 :

(52)

Expanding this in the scaling region and using informa-
tion from Sec. IV, we can write € in the scaled form

:Z—f(%_{ . (53)
y
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Substituting this in (50) and using the scaling form (31)

for r*, we get
2p p Ey
5= 1+ . (54)
fP 2fp+2 APZ,V*Zp/(p+2)

From this equation we see clearly that the barrier
height scales with a new exponent and there is also a new
amplitude. By comparison with Eq. (38), we conclude
that the hypothesis is satisfied with

c=2p/(p+2) (55)

and
- 2

C,=1/4, . (56)
The scaling function is given by

F(y,z)=f(y)Me[b(y,2z)] , (57)
where the energy loss is given by

- % p
S8(y,z)= (58)
PETrer | arpp®?

Having shown that the reduced rate in the PGH ap-
proximation obeys scaling and universality proposed by
us in Eq. (38), we can now study its behavior in different
scaling regimes. It should be kept in mind that all of the
following statements are made in the scaling region and
they may or may not be applicable beyond this region.
First of all it is clear that when z >>1, the energy loss be-
comes very large making Me(8)~=1. Two variable scaling
function F(y,z) reduces to the one variable scaling func-
tion f(y) encountered in the GH case. Therefore, at
least in the scaling region, one does not have to let the
barrier height E, go to infinity to see the GH results: the
condition Ej >>y*?%/?*2) is sufficient. Of course once
the GH rate is obtained one may get all the relevant lim-
iting cases (11)-(13) as before.

For a finite but fixed z, we have three cases to consider
depending on the coupling strength as usual. In the
strong-coupling case, y— — «, and, from Eq. (33), we
find that f(y) goes to 0 as 1/|y|?. From (58) we see that
the energy loss is very large. Therefore, in this case the
GH behavior is obtained for any fixed z. In the weak-
coupling case, y 1s positive and very large. From (33), we
can find that f(y) goes to infinity like y /2. From (58), w
find that the energy loss is very small for a fixed z, so that
we can use the fact that Me(8)=®6. This means that
F(y,z)=2py''"?2z. Therefore, the GH limit is ob-
tained, if p <1. If p > 1, the GH limit is never obtained.
The ultimate behavior of the rate for large y is given by

R*=~2pEfw*A1 P2y p (59)

Finally, in the core regime, y =0 and from (33) we ob-
tain that f(y)=1. Therefore from (58), the energy loss is
proportional to z. For large fixed z, we will see the GH
behavior. For small fixed z, we will see deviations from
this behavior. In this case, the rate is easily seen to be
given by

thzp(1+p /2)El:=w*3/(p+2),yt—3p/(p+2) . (60)
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In the next section, we discuss the piecewise parabolic
potential model studied by PGH from the scaling point of
view and show that this model and the PRW model are in
the same universality class.

VIII. THE PIECEWISE PARABOLIC
POTENTIAL CASE

In order to discuss the results of PGH [12] in the scal-
ing limit, we have to know the behavior of many quanti-
ties appearing in their energy-loss expression (4.25). We
already know that the GH frequency goes to zero. From
their Eqgs. (4.22) and (4.23), we see that their quantities §
and o also go to zero in the scaling limit. On the other
hand, the renormalized well frequency A, and the well
crossing time ¢, tend to finite limits. From Egs. (4.15)
and (4.20), we deduce that

M=ubloftwy), t,=m/Ag. (61)

Substituting all this in Eq. (4.25), we see that the value
R (0) of the integral (4.26) is needed. This is obtained ei-
ther directly from (4.26) or from (4.27). We get

R(0)=2/A2 . (62)

All this information gives the average energy loss in the
scaling limit. We obtain

AE =4¢(1+¢)E, r** 0} /(03 +0}) . (63)

Comparing this with the energy loss in the PRW model
given by our Eq. (50), we see that the two are identical ex-
cept for the factor w3/(w3+w?) in the potential studied
by PGH. Clearly the behavior of the two models is iden-
tical and they belong to the same universality class. The
only difference is that the amplitude C, in their model is
given by

C,=(1/4}) 0§/ (wi+w})] . (64)

From the set of exponents and scaling functions that
we have obtained, we can draw the following conclusion.
All PRW and piecewise parabolic potential models with
the same values of p are in the same universality class.
They may have different critical strengths and their other
amplitudes may be different, but they have identical set of
exponents and scaling functions.

IX. CONCLUDING REMARKS

In summary, we have proposed a scaling hypothesis to
describe the behavior of the escape rate in the ABC prob-
lem. We have verified that the hypothesis is valid for the
purely parabolic GH model for a general class of fric-
tions. We found that all the GH models fall into univer-
sality classes based on a single parameter p of the MFK.
This parameter governs the short-time behavior of the
MFK. We have also verified that the hypothesis is appli-
cable to the PRW model within the PGH weak-coupling
approximation. In this case one needs an additional ex-
ponent and amplitude to scale the barrier height. We
find that the PRW and the piecewise parabolic models
considered by PGH fall into the same universality class.
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As mentioned before we have already verified the hy-
pothesis for a general class of potentials in the PGH ap-
proximation. We have also proposed and verified anoth-
er hypothesis valid for the case of large a and fixed y.
All of these will be published in the future [17].

Having obtained the information in the critical region
(except perhaps in the “core”), it should be possible to
obtain accurate estimates of the exact rate by using stan-
dard methods of critical theory [8]. One may derive the
exact high and low a series expansions for the rate and
then use Domb’s method or the Padé approximant
method to extrapolate to the exact result accurately. One
advantage of the procedure is that the critical “tempera-
ture” a, is known exactly. This will enable one to get
good results for exponents and scaling functions. Also,
one might be able to use the information in the critical re-
gion in conjunction with series expansions to obtain the
rate in the whole parameter space. It would be tremen-
dously interesting to study the ABC problem from the
renormalization-group [18] point of view. This is another
scheme, which, apart from explaining critical phenome-
na, has been instrumental in yielding information about
the problem far away from the critical region.

Finally, we would like to remark on the possibility of
verifying the scaling hypothesis experimentally. Usually,
the experiments are very difficult to interpret theoretical-
ly because the models are, at best, caricatures of physical
reality. They neglect many things and emphasize others.
But the hypothesis of universality will help us here. Ac-
cording to this hypothesis, the universal quantities such
as the exponents and scaling functions depend on very
few crucial parameters of the system. As mentioned be-
fore, even in the GH model, the universal features depend
on just one parameter p. All others, such as g(0) and k,
are totally irrelevant. Therefore, many experimental sys-
tems will have similar behavior. In the field of critical
phenomena, we know already that liquids, liquid mix-
tures, binary alloys, and uniaxial ferromagnets are in the
same universality class as the nearest-neighbor Ising
model. All of these physical systems have complicated
many-body interactions having different origins, but they
all behave identically in the critical region. The only
differences are in the nonuniversal quantities such as the
amplitudes. But even with these differences, the ampli-
tude universality can be used to make the scaling func-
tions universal.

In closing, we hope that this “union” of two seemingly
different phenomena will prove valuable in future
theoretical studies of the ABC problem. Researchers in
the field of critical phenomena should be able to bring to
bear their specialized methods to obtain further studies of
the ABC problem.
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